Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Despite the potential use of polyelectrolyte multilayers for biomedical, separation, and energy applications, their dynamic properties are not sufficiently understood. In this work, center-of-mass diffusion of a weak polyacid—poly(methacrylic acid) (PMAA) of linear and 8-arm architecture (L-PMAA and 8-PMAA, respectively) and matched molecular weight—was studied in layer-by-layer (LbL) assemblies with poly(diallyldimethylammonium) chloride (PDADMAC) of varied molecular weight. The film deposition at low-salt, acidic conditions when PMAA was only partially ionized yielded thicker, more diffused layers with shorter PDADMAC chains, and bilayer thickness decreased for multilayers constructed with longer PDADMAC. The molecular architecture of PMAA had a weak effect on film growth, with bilayer thickness being ∼20% larger for L-PMAA for the films constructed with the shortest PDADMAC (35 kDa) and identical film growth for L-PMAA and 8-PMAA with the longest PDADMAC (300 kDa). The exposure of the multilayer films to 0.2M NaCl triggered a reduction in PMAA ionization and significant lateral diffusivity of fluorescently labeled PMAA molecules (PMAA*), with diffusion coefficients D ranging from 10−13 to 10−12 cm2/s, as determined by the fluorescence recovery after photobleaching technique. For all the films, polymer mobility was higher for star polyacids as compared to their linear counterparts, and the dependence of PMAA diffusion coefficient D on PDADMAC molecular weight (D ∼ M−n) was relatively weak (n < 0.6). However, 8-PMAA demonstrated an approximately doubled power exponent compared to the L-PMAA chains, suggesting a stronger effect of the molecular connectivity of the partner polycation molecules on the diffusion of star polyelectrolytes.more » « less
- 
            Abstract The intrinsic reversibility of dynamic covalent bonding, such as the furan‐maleimide Diels‐Alder (DA) cycloaddition reactions, enables reprocessable, self‐healing polymer materials that can be reconfigured via the mechanism of solid‐state plasticity. In this work, the temperature‐dependent exchange rates of stereochemically distinctendoandexoDA bonds are leveraged to achieve tunable, temperature‐ and stress‐activated shape morphing in Diels‐Alder polymer (DAP) networks. Through thermal annealing, ≈35% ofendoDA isomers are converted in neat DAP networks to the thermodynamically favoredexoform, achieving ≈97%exoafter complete annealing at 60 °C. This conversion results in a ≈1.7 fold increase in elastic modulus, from 1.7 to 3.0 MPa, and significantly alters the stress relaxation and shape recovery behavior. Spatially resolved annealing, is further showcased enabling the precise control of spatial distributions ofendoandexoDA bonds across planar geometries. The locally distinct concentrations ofendo/exoisomers, achieved by temperature‐induced conversion ofendoDA isomers to the thermodynamically stableexoDA isomers, gave rise to the spatial distributions of stress relaxation rates and elastic strain recovery mismatch to enable controlled stereochemical shape morphing. This approach provides a simplified, thermally driven method for shape morphing, with potential applications in soft robotics and flexible electronics.more » « less
- 
            We report synthesis of temperature-responsive linear and star poly(2-ureido aminoethyl methacrylates) (PUEMs) of matched molecular weights, their phase transitions in aqueous solutions and interactions with hydrogen bonding and hydrophobic small molecules. PUEMs with number of arms up to 8 were synthesized via the activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) technique using the core-first approach. The degrees of branching were determined using gel permeation chromatography (GPC) equipped with the multi-angle laser light scattering and viscometry detectors. The polymer molecular architecture had a neglectable effect on the upper critical solution temperature (UCST) behavior in aqueous solutions, while the presence of a strong hydrogen-bonded acceptor – dimethyl sulfoxide (DMSO) – suppressed the transition temperature for both linear and star UCST polymers. Importantly, star PUEMs showed an enhanced ability of trapping model drug molecules – proflavine and pyrene. In particular, an increase in polymer branching led to 4.5-fold more efficient proflavine trapping and stronger binding of pyrene molecules within the hydrophobic domains of star polymers below their UCST. The trapped molecules could be then fully released from the star polymers upon temperature increase, demonstrating potential for controlled delivery applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
